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Presenter
Presentation Notes
The photo in the background shows the Mauna Loa Observatory at dusk (courtesy Forrest Mims).  This is where, in 1958, Charles David Keeling began his now-famous atmospheric carbon dioxide data set – sometimes called “the Keeling Curve.”  The data trend shows carbon dioxide has risen from about 318 parts per million in 1958 to about 388 ppm in 2008.  The gray “saw-toothed” line shows actual measurements and the red line shows the running mean value.  

(Data courtesy NOAA Earth System Research Laboratory)  


“The rise in CO, is proceeding so slowly that most

of us today will, very likely, live out our lives
without perceiving that a problem may exist™

Keeling CD, Harris TB, Wilkins EM, 1968. Concentration of atmospheric carbon dioxide at 500 and 700
millibars. J. Geophys. Res. 73:4511-28



@ Fossil and Cement Emissions

Global fossil and cement emissions: 9.5+0.5PgC in 2011, 54% over 1990
Projection for 2012: 9.7+0.5PgC, 58% over 1990
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Source: Peters et al. 2012a; Le Quéré et al. 2012; CDIAC Data; Global Carbon Project 2012



http://www.earth-syst-sci-data-discuss.net/5/1107/2012
http://cdiac.ornl.gov/trends/emis/meth_reg.html
http://www.globalcarbonproject.org/carbonbudget/

L T "Wwia ¥ X .
= Emissions fromcoal ofl gas,cement

Emissions growth 2000-2011: coal (4.9%/yr), oil (1.1%l/yr), gas (2.7%lyr),
cement (6.9%/yr), flaring (4.3%/yr, not shown)
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http://cdiac.ornl.gov/trends/emis/meth_reg.html
http://www.earth-syst-sci-data-discuss.net/5/1107/2012
http://www.globalcarbonproject.org/carbonbudget/

@ Top Fossil Fuel Emitters (Absolute)

Top four emitters in 2011 covered 62% of global emissions
China (28%), United States (16%), EU27 (11%), India (7%)
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The growing gap between EU27 and USA is due to emission decreases in Germany (45% of the
1990-2011 cumulative difference), UK (19%), Romania (13%), Czech Republic (8%), and Poland (5%)
Source: CDIAC Data; Le Quéré et al. 2012; Global Carbon Project 2012
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http://cdiac.ornl.gov/trends/emis/meth_reg.html
http://www.earth-syst-sci-data-discuss.net/5/1107/2012
http://www.globalcarbonproject.org/carbonbudget/

The Human Perturbation of the CO, Budget (2000-2009)

7.7+0.5 PgC y*! 4.1+0.1 PgC y1 3
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Global Carbon Project 2010; http://www.globalcarbonproject.org/carbonbudget/index.htm



http://www.globalcarbonproject.org/carbonbudget/index.htm

Large and Consistent Global Forest Carbon Sink
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Presentation Notes
Carbon sinks and sources (Pg C yr-1) in the world’s forests. Down-arrows represent sinks, while up-arrows sources. Dark and grey colors are for boreal, temperate and intact tropical forests, and dark and light brown colors are for tropical regrowth forests from deforested lands. 


Efficiency of Natural Sinks
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Presentation Notes
The global oceanic CO2 sink removed 25% of all CO2 emissions for the period 2000-2007, equivalent to an average of 2.3 PgC per year. The size of the CO2 sink in 2007 was similar to that in the previous year but lower by 0.1 PgC compared to its expected increase from atmospheric CO2 growth. This was due to the presence of a La Nina event in the equatorial Pacific. The Southern Ocean CO2 sink was higher in 2007 compared to 2006, consistent with the relatively weak winds and the low Southern Annular Mode. An analysis of the long term trend of the ocean sink shows a slower growth than expected of the CO2 sink over the last 20 years. 
Terrestrial CO2 sinks removed 29% of all anthropogenic emissions for the period 2000-2007, equivalent to an average of 2.6 PgC per year. Terrestrial ecosystems removed 2.9 PgC in 2007, down from 3.6 Pg in 2006, largely showing the high year-to-year variability of the sink. An analysis of the long term trend of the terrestrial sink shows a growing size of the CO2 sink over the last 50 years. 

http://www.ihdp.uni-bonn.de/

NASA Technical Memorandum 85841

Land-Related Global Habitability

Science Issues

Land-Related Global Habitability
Sciences Working Group

JULY 1983
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Relating transpiration and photosynthesis to NDVI, 1988

MADISON 1984
NDVI VS PHOTOSYNTHESIS, TRANSPIRATION
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Driving ecosystem models with satellite data, concept for

NASA Global Habitability, 1983
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Integrated, Multiple Constraints on the Biosphere

1000 km
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Prediction

Downscaling
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Presenter
Presentation Notes
There is a diverse suite of user products available 
To the left is the short name/to the right is a product description.
Of all these Land products I am focusing this discussion today on Leaf area index/ evapo-transpiration and Primary Production.  Which I might refer to as MOD15, MOD16 and MOD17 respectively

We will start with Leaf area index.  

A quick note before we begin however:  The MODIS data are not available between the period of June 10 and june 26 due to some electronic problems. So all data you will seee today which span that period were interpolated using a simple linear interpolation from the periods on either side of the failure. 
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Potential limits to vegetation net primary production based on fundamental physiological
limits by solar radiation, water balance, and temperature (from Churkina & Running,
1998; Nemani et al., 2003; Running et al., 2004).




Seasonal Growing Season Constraints
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Climate space of global NPP

Annual NPF in Climate space
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GPP = Light X Conversion Efficiency

SPP = X

MOD17A2 (GPP) over Globe, May 1 - May 8, 2003

Average Daily GPP (gC/m’fday)

@ 1 @ 3 & 5 & o4 85 Ap AL 12 a3 s
© 2003 NTSG, The University of Montana




NPP. = Annual GPP - Autotrophic
Respiration

NPP. =

MOD17A3 v105 (Enhanced NPP) over the Globe, 2003
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Change In Terrestrial NPP from 1982 to 1999

Nemani et al., Science June 6t 2003
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Temperature Is a control factor of growing
season for NH but not SH !

| i

0 61 122 | 183 | 244 | 305 366
Average Snow Cover Free Days (2000—2009)

For NH, 125 days snow cover
For SH, 7.5 days snow cover

Zhao & Running 2010, Science
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Presentation Notes
This is derived from the Colleciton5 MODIS snow cover dataset.


NPP anomaly (Pg C/y)

Global MODIS NPP Anomaly
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CO, growth rate anomaly (Pg C/y)
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Presentation Notes
The current financial crisis had a small but probably discernable impact on the emissions growth rate in 2008 (growth rate of 2.0% down from 3.4% per year average over the previous 7 years). Despite this slowdown, fossil fuel emissions continue to track the average of the most carbon-intensive scenario of the Intergovermental Panel on Climate Change. In 2009, we project emissions to decline to levels observed in 2007 with negative growth of -2.8%. Positive growth is expected return in 2011 as the change in global Gross Domestic Product goes positive.
We have estimated emissions for 2009 based on the projection of -1.1% GDP growth rate provided by the International Monetary Fund (October 2009) and assuming a continue global decline in the carbon intensity of the GDP as seen over the last 30 years (-1.7% per year). 


NPP over two hemisphere trend (2000-2009)
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Presentation Notes
PDSI is Palmer Drought Severity Index


Comparison of GPP from Terra-MODIS
and AmeriFlux Network Towers

The ameriFlux network, established in 1996, provides

continuous observations of ecosystem level
exchanges of CO2, water, energy and
miamentum spanning diumal,
synoptic, seasonal, and
interannual time scales.

Biome types used in comparison: forests
; (evergreen needleleaf, deciduous broadleaf, and
mixed species), oak savanna, grassland, tundra,
and chaparral.
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Multi-scale Measurement Strategy
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Tavg-DAOI
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2003 Tower Data vs. Interpolated DAO
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Presentation Notes
Meteorology tends to explain about 27% of the difference between DAO & Tower results.
Meteorology is not an issue at this site.
     The DAO tends to capture the trends at the site.
The most likely sources of error at this site include the 
     over-estimation of LAI.  MODIS estimates LAI at
     ~5, but site LAI is closer to 3.  Also, consistent
     cloudiness in the region leads to potential
     contamination of the input LAI/fPAR, which
     is then filled by linear interpolation.
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Presentation Notes
Park Falls is a transitional site.
Also, as a tall tower, the footprint is much more similar to that 
     of MODIS.
Again, MODIS GPP overestimates tower GPP throughout the year.
     LC is less of an issue here as it is largely mixed forest.
     However, the area consists of approximately 30% wetlands,
          which cannot be captured by MODIS (no 
          soil component).
     Still captures general seasonal trend as well as daily fluctuations
          in productivity.


Grassland, Vaira Ranch, CA, 2001
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Validation MODIS GPP (annual total)
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MONITORING REDD
POLICY
(Landcover Change)



The difference
between potential”
and “actual”
landcover and the
role of humans
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MODIS EVI Profiles Per IGBP Land Cover Type
(Yearly Average) April 2000 to April 2003
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Comparison of Land Surface Temperatures from Aqua MODIS
Sahara Desert vs central African Tropical Forest
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Maximum Land Surface Temperature for 2004 {(Celsius
Mildrexler, Zhou, Running. AGU Eos 87:461, 2006




Mean max LST and EVI for Western U.S. (2003 through 2004)
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GLOBAL Generalized Disturbance Index

Disturbance Index
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MODIS Annual Disturbance
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Disturbance Impact on Land Biophysics

med Area 2002 Surface Temperature 2003 Vegetation Production change
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Global Fires for 10 Days




Terrestrial Carbon Monitor
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CEQS ECV (Essential Climate Variables)
from GCOS — 138, Aug 2010

e Albedo

e Landcover

 FAPAR

o LA

e Biomass (is NPP better?)

e Soil Carbon (from satellite?)

 Fire Disturbance
e Soil Moisture

| Note phenology is always implicitly part of other variables ]
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IGBP CLIMATE-CHANGE INDEX §

Combining data to expose
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PLANETARY BOUNDARIES

Rockstrom et al. Nature 2009




Terrestrial NPP = Planetary Boundary??

400 600 800 1000 1200 Barren Urban Water
MEAN NPP (2000_2006) gc/mz/yr by Maosheng Zhao @ NTSG

Zhao et al., 2005, Remote Sensing of Environment




a
<
L
©

Q

b

2

Q
<




PARTITIONING OF GLOBAL NPP

Global

NPP: 53 PgC
AREA: 110 Mkm?

Belowground
NPP: 15 PgC
AREA: 110 Mkm? Available ??
NPP: 5 PgC
AREA: 29 Mkm?
Unavailable Bioenergy
NPP:13"PgC (40% GPEC)
AREA:33 Mkm?

HANPP
NPP: 20 PgC
AREA: 48 Mkm?

Agliculture
NEP:6\PgC
AREASISIIVIKm?




THE MOST DISTANT IMAGE OF EARTH EVER TAKEN, 1 BILLION KM

WE BETTER NOT SCREW THIS PLANET UP
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